Új eredmények a kvantumpontok energiaállapotairól

2020 / 07 / 06 / Justin Viktor
Új eredmények a kvantumpontok energiaállapotairól
Az elméletben megjósolt Auger-hatás kísérleti bizonyításával épp most kerültünk egy nagy lépéssel közelebb a kvantummechanika jobb megértéséhez, a kvantuminformáció kódolásának új módszereihez, és ezeken keresztül ahhoz az egyetlen szóhoz, a Grálhoz, ami miatt el fogod olvasni ezt a cikket: a kvantumszámítógéphez.

Auger-effektus

A bázeli, a bochumi és a koppenhágai tudósok a kvantumpontok energiaállapotaiba nyertek új betekintést friss kísérleteikben. A tudósok bizonyítékkal szolgáltak a kvantumpontokban elméletileg megjósolt Auger-hatásról.

A tudósok megerősítették, hogy bizonyos mennyiségű energia létrehozta a kvantumpontokban a specifikus energiaátmeneteket, melyeket az elmélet által megjósolt Auger-effektus bizonyított. A kísérletben a kristálynövekedés önszerveződő folyamatait alkalmaztak kvantumpont létrehozására. Ez a folyamat sok nanométeres méretű kristályt állított elő, például indium-arzenid kristályokat, melyekben csapdázni tudták az egyetlen elektronhoz hasonló töltéshordozókat.

Ez a megoldás kivitelezhető kvantumkommunikációt ígér, mivel lehetővé teszi a töltéshordozó spinjével történő kódolást, ehhez a kódoláshoz viszont szükséges a spin kívülről történő manipulálásának és olvasásának képessége. A leolvasás során kvantuminformáció illeszthető be például egy foton polarizációjába, és ez utána fénysebességgel továbbíthatja az információt, vagyis felhasználható kvantum-információ átvitelre.


Töltött exciton sematikus ábrázolása, vagyis gerjesztett állapot, amely két elektronból és egy lyukból áll kvantumponton belül. (Kép: RUB, Arne Ludwig)

Kvantumkommunikáció

A tudósok szívesen megtudnák, mi történik pontosan a kvantumpontban, amikor az energiát kívülről besugározzák a mesterséges atomra. Egy több-elektronos atomban egy gerjesztett elektron lebomolhat egy foton kibocsátásával, a maradék részecskék ilyenkor tipikusan alapállapotukban (legkisebb energiájú sajátállapotukban) vannak.

A sugárzással járó Auger-folyamat során a maradék elektronok gerjesztett állapotban vannak, és egy vöröseltolódott foton is létrejön. Egy félvezető kvantumpontban, az előrejelzés sugárzó Auger-folyamatot ígér a feltöltött excitonokra vonatkozóan.

Gyakorlati siker

Most bázeli tudósok elvégezték a gyakorlati kísérleti megfigyelést is. Dr. Matthias Löbl és Richard Warburton professzorok Bochumból és Koppenhágából származó kollégáikkal figyelték meg a radioaktív Auger-folyamatot mindössze egyetlen foton és egy Auger-elektron részvételével.


A kvantum ponton belüli elektront egy foton (zöld hullámformában) magasabb energiaszintre emelte. Az eredmény egy úgynevezett exciton lett, olyan gerjesztett állapot, ami két elektronból és egy lyukból áll. A foton (zöld hullámforma) kibocsátásával a rendszer visszatér az alapállapotba (zöld út). Ritka esetekben sugárzó Auger-folyamat zajlik le (piros nyíl): egy elektron gerjesztett állapotban marad, míg egy alacsonyabb energiájú foton kerül (piros hullámforma) kibocsátásra. (Kép: RUB, Arne Ludwig)

A tudósok most először mutatták ki a sugárzó Auger-folyamat és a kvantumoptika kapcsolatát. Megmutatták, hogy a kvantumoptikai mérések a sugárzó Auger-emisszióval eszközként használhatók egyetlen elektron dinamikájának vizsgálatára.

A sugárzó Auger-effektus segíthet meghatározni a kvantummechanikai energiaszintek szerkezetét, melyek a kvantumpontban egyetlen elektron rendelkezésre állnak. Mindeddig ez csak közvetett módon volt lehetséges optikai módszerekkel kombinált számítások révén, és most közvetlen bizonyítékot sikerült találni. Ez segít majd jobban megérteni a kvantummechanikai rendszereket.

Nem csak az indium-arzenid-félvezetők kvantumpontjaiban, hanem a félvezető-gallium-arzenidben is megfigyelték ugyanezt a hatást. A Bochumi csapat mindkét anyagrendszerben rendkívül stabil környezetet teremtett a kvantumpont számára, amely meghatározó volt a sugárzó Auger-folyamat szempontjából. A bochumi Ruhr-Universität csoportja évek óta dolgozik a stabil kvantumpontok optimális körülményeinek megteremtésén.

(Forrás: Nature Nanotechnology Képek: Pixabay)


 


Továbbra is hódít a párját ritkító hungarikum, ami a jövő tudósait és művészeit adja a világnak
Továbbra is hódít a párját ritkító hungarikum, ami a jövő tudósait és művészeit adja a világnak
Az Országos Tudományos Diákköri Tanács (OTDT) által szervezett Országos Tudományos Diákköri Konferencia (OTDK) sok évtizedes hagyománya mára széles körű népszerűséget ért el, és fontos kiindulási pont lehet a hazai és határon túli tehetségek számára a jövőbeli karrierjük felé vezető úton. A 2025-ös, 37. konferencia előtt az OTDK céljáról és működéséről Prof. Dr. Szendrő Péter örökös elnök úrral és dr. Cziráki Szabinával, az OTDT titkárával beszélgettünk.
3000 év után találták meg az elveszett Aranyvárost Egyiptomban
3000 év után találták meg az elveszett Aranyvárost Egyiptomban
Aton 3000 éves városa az egyik legjelentősebb egyiptomi felfedezés az elmúlt száz évben.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.